Executing sequential code in parallel on a multithreaded machine has been an
elusive goal of the academic and industrial research communities for many years. It
has recently become more important due to the widespread introduction of multicores
in PCs. Automatic multithreading has not been achieved because classic, static
compiler analysis was not powerful enough and program behavior was found to be, in
many cases, input dependent. Speculative thread level parallelization was a welcome
avenue for advancing parallelization coverage but its performance was not always optimal
due to the sometimes unnecessary overhead of checking every dynamic memory
reference.
In this dissertation we introduce a novel analysis technique, Hybrid Analysis,
which unifies static and dynamic memory reference techniques into a seamless compiler
framework which extracts almost maximum available parallelism from scientific
codes and incurs close to the minimum necessary run time overhead. We present how
to extract maximum information from the quantities that could not be sufficiently
analyzed through static compiler methods, and how to generate sufficient conditions
which, when evaluated dynamically, can validate optimizations.
Our techniques have been fully implemented in the Polaris compiler and resulted
in whole program speedups on a large number of industry standard benchmark applications.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1076 |
Date | 15 May 2009 |
Creators | Rus, Silvius Vasile |
Contributors | Rauchwerger, Lawrence |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.0018 seconds