Return to search

On the Performance of Jpeg2000 and Principal Component Analysis in Hyperspectral Image Compression

Because of the vast data volume of hyperspectral imagery, compression becomes a necessary process for hyperspectral data transmission, storage, and analysis. Three-dimensional discrete wavelet transform (DWT) based algorithms are particularly of interest due to their excellent rate-distortion performance. This thesis investigates several issues surrounding efficient compression using JPEG2000. Firstly, the rate-distortion performance is studied when Principal Component Analysis (PCA) replaces DWT for spectral decorrelation with the focus on the use of a subset of principal components (PCs) rather than all the PCs. Secondly, the algorithms are evaluated in terms of data analysis performance, such as anomaly detection and linear unmixing, which is directly related to the useful information preserved. Thirdly, the performance of compressing radiance and reflectance data with or without bad band removal is compared, and instructive suggestions are provided for practical applications. Finally, low-complexity PCA algorithms are presented to reduce the computational complexity and facilitate the future hardware design.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4369
Date05 May 2007
CreatorsZhu, Wei
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0156 seconds