Return to search

Comportement mécanique des carbonates peu poreux : étude expérimentale et modélisation micromécanique / Mechanical behavior of low-porous carbonates : experimental study and micromechanical modeling

Avec l’augmentation de la pression de confinement, le comportement mécanique des calcairespasse d’un comportement fragile à un comportement ductile. Le régime fragile estcaractérisé par une compaction élastique suivie d’une dilatance macroscopique due à despropagations de fissures. Lorsque les fissures coalescent, la rupturemacroscopique est reliéeà une chute de contrainte. Le régime ductile est caractérisé par une compaction élastiquesuivie d’une déformation macroscopique diffuse. La déformation est accommodée par uneplasticité intracristalline (dislocations, macles) et/ou une fracturation des grains. L’objectif decette thèse est d’examiner expérimentalement les paramètres influant sur le comportementmécanique des calcaires de porosité intermédiaire et de modéliser ce comportement. Lesexpériences ont été réalisées sur le calcaire de Tavel (porosité de 14.7%). / The mechanical behaviour of limestones is brittle at low confining pressure and becomesductile with the increase of the confining pressure. The brittle behaviour is characterisedby a macroscopic dilatancy due to crack propagation, leading to a stress drop when crackscoalesce at failure. The ductile behaviour is characterised by a a diffuse deformation due tointra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aimof this work is to examine the influence of temperature, pore fluid, strain rate, and time onthe mechanical behaviour. Triaxial deformation experiments were performed on white Tavellimestone (porosity 14.7%). The macroscopic behaviour is then modelled.Constant strain rate triaxial deformation experiments and stress-stepping creep experimentswere performed. Elastic wave velocities were inverted in term of axial crack densities. Themechanical behaviour is brittle for constant strain rate deformation experiments performed atPc · 55 MPa. In this case, inelastic deformation is due to cracks propagation. For Pc ¸ 70 MPa,elastic compaction is followed by an inelastic compaction. Porosity collapse is due to intracrystallineplasticity and micro-cracking. After some inelastic compaction, volumetric strainturns to dilatancy because crack nucleate at dislocation pile-ups and their contribution to thestrain becomes predominant compared to plastic pore collapse. In the brittle regime, watersaturationdecreases the differential stress at the onset of crack propagation and enhancesmacroscopic dilatancy. Temperature decreases the confining pressure at the brittle-semibrittle(ductile) transition. A model describing the macroscopic behaviour is derived from (1) a crackpropagation law, (2) a plasticity law for a porous medium, and (3) a law for nucleation of newscracks due to local dislocation pile-ups. The model predicts the volumetric strain, the stresstensor, and the evolution of damage, as a function of applied deformation. Theoretical resultsare in good agreement with experimental observations.

Identiferoai:union.ndltd.org:theses.fr/2015ENSU0040
Date27 November 2015
CreatorsNicolas, Aurélien Pierre
ContributorsParis, Ecole normale supérieure, Guéguen, Yves, Fortin, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds