Return to search

Analysis Of Fiber Reinforced Composite Vessel Under Hygrothermal Loading

The aim of this study is to develop an explicit analytical formulation based on the anisotropic elasticity theory that determines the behavior of fiber reinforced composite vessel under hygrothermal loading. The loading is studied for three cases separately, which are plane strain case, free ends and pressure vessel cases. For free-end and pressure vessel cases, the vessel is free to expand, on the other hand for plane strain case, the vessel is prevented to expand. Throughout the study, constant, linear and parabolic temperature distributions are investigated and for each distribution, separate equations are developed. Then, a suitable failure theory is applied to investigate the behavior of fiber reinforced composite vessels under the thermal and moisture effects. Throughout the study, two computer programs are developed which makes possible to investigate the behavior of both symmetrically and antisymmetrically oriented layers. The first program is developed for plane strain case, where the second one is for pressure vessel and free-end cases. Finally, several thermal loading conditions have been carried out by changing the moisture concentration and temperature distributions and the results are tabulated for comparison purposes.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/1026376/index.pdf
Date01 January 2004
CreatorsSayman, Sumeyra
ContributorsParnas, Levend
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.016 seconds