Return to search

The study of bionanocomposite thin films and their crystal growth behaviour

Ph.D. (Chemistry) / This study focuses on the morphology and crystal-growth behaviour of polyactide (PLA)-based blends and blends modified with organoclay thin films. The study further examined the effect of blending and the incorporation of organoclays on the enzymatic degradation behaviour. Thin films of unmodified and nanoclay-modified PLA/poly(butylene succinate) (PBS) blends were cast on a glass substrate by a spin coater, while thin films of biodegradable PLA/poly[(butylene succinate)-coadipate] PBSA blends and blends containing organoclays were cast on a silicon (100) wafer substrate. The morphology and crystal growth behaviour of the thin films crystallized at different temperatures were examined with an atomic force microscopy (AFM) equipped with a hot-stage scanner. In PLA/PBS blend thin films, AFM images showed that the size of the dispersed PBS phase was influenced by C30B clay loading on the blends. The dispersed size reduced on the addition of C30B clay up to 2 wt%, beyond which, dispersed size began to increase. Transmission electron microscopy studies indicated that this behaviour was due to the preferential location of silicates in the PBS phase than in the PLA phase. For thin films annealed at 60 °C, the additi on of organoclays to the blend quenched the growth of edge-on lamellae. The crystalline morphologies at 120 °C were dominated by edge-on lamellae grown, around the PBS phase to form spherulites. Morphologies of thin films crystallized at 120 °C from melt were dominated by the flat-on lamellae, while those crystallized at 70 °C from melt were dominated by the edge-on lamellae. In the case of PLA/PBSA blend thin films, the results indicated that the size and distribution of the dispersed phase were directly related to the blend composition. The crystal growth behaviours indicated the presence of homogeneous and heterogeneous nucleations, and the nature of nucleation was directly related to the blend ratio and the temperature at which crystallization occurred. Therefore, this study will facilitate the understanding of crystal growth behaviour in a confined environment and will enable the modulation of the blend properties.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:12544
Date08 October 2014
CreatorsMalwela, Thomas
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.0017 seconds