Return to search

Development and evaluation of novel coupling agents for kenaf-fiber-reinforced unsaturated polyester composites

Natural fibers are gaining popularity as reinforcement materials for thermoset resins over the last two decades. Natural fibers are inexpensive, abundant, renewable and environmentally friendly. Kenaf fibers are one of the natural fibers that can potentially be used for reinforcing unsaturated polyester (UPE). As a polymer matrix, UPE enjoys a 40% market share of all the thermoset composites. This widespread application is due to many favorable characteristics including low cost, ease of cure at room temperature, ease of molding, a good balance of mechanical, electrical and chemical properties.
One of the barriers for the full utilization of the kenaf fiber reinforced UPE composites, however, is the poor interfacial adhesion between the natural fibers and the UPE resins. The good interfacial adhesion between kenaf fibers and UPE matrix is essential for generating the desired properties of kenaf-UPE composites for most of the end applications. Use of a coupling agent is one of the most effective ways of improving the interfacial adhesion. In this study, six novel effective coupling agents were developed and investigated for kenaf-UPE composites: DIH-HEA, MFA, NMA, AESO-DIH, AESO-MDI, and AESO-PMDI. All the coupling agents were able to improve the interfacial adhesion between kanaf and UPE resins. The coupling agents were found to significantly enhance the flexural properties and water resistance of the kenaf-UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed all the coupling agents were covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed the improved interfacial adhesion between kanaf fibers and UPE resins. / Graduation date: 2013

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/30754
Date11 June 2012
CreatorsRen, Xiaofeng
ContributorsLi, Kaichang
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0018 seconds