Return to search

Enhancing Cnt-composites With Raman Spectroscopy

Carbon Nanotubes (CNTs) have been the subject of intense research for their potential to improve a variety of material properties when developed as nano-composites. This research aims to address the challenges that limit the ability to transfer the outstanding nano-scale properties of CNTs to bulk nano-composites through Raman characterization. These studies relate the vibrational modes to microstructural characterization of CNT composites including stress, interface behavior, and defects. The formulation of a new fitting procedure using the pseudo-Voigt function is presented and shown to minimize the uncertainty of characteristics within the Raman G and D doublet. Methods for optimization of manufacturing processes using the Raman characterization are presented for selected applications in a polymer multiwalled nanotube (MWNT) composite and laser-sintered ceramic-MWNT composite. In the first application, the evolution of the MWNT microstructure throughout a functionalization and processing of the polymerMWNT composite was monitored using the G peak position and D/G intensity ratio. Processing parameters for laser sintering of the ceramic-MWNT composites were optimized by obtaining maximum downshift in stress sensitive G-band peak position, while keeping disorder sensitive D/G integrated intensity ratio to a minimum. Advanced Raman techniques, utilizing multiple wavelengths, were used to show that higher excitation energies are less sensitive to double resonance Raman effects. This reduces their influence and allows the microstructural strain in CNT composites to be probed more accurately. iii The use of these techniques could be applied to optimize any processing parameters in the manufacturing of CNT composites to achieve enhanced properties.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2849
Date01 January 2011
CreatorsFreihofer, Gregory J
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0019 seconds