Return to search

Polypyrrole-containing Composite Particles: Preparation, Characterization and Application

This research is focused on preparation of polypyrrole (PPy) composite particles by using socalled template oxidative polymerization method. As a template, water-soluble polymers, polymeric microgels, latex particles or bulk gels can be used. The morphology and properties of the composite particles can be controlled effectively by the proper use of the template. By choosing the dopant anion or oxidation agent it is possible to vary the conductivity of the polymer. In the case when uncrosslinked PVME was used as stabilizer, core-type polypyrrole spherical particles in the range of 50-100 nm were formed in both aqueous ethanol and water. Results of the elementary analysis, IR spectroscopy confirmed that the anionic salts can be incorporated in the PPy particles and play as the dopants. The presence of dopants in polypyrrole enhances the conductivity, especially in the case of sodium benzoate the conductivity of the final product has been improved by 3 orders. Polymeric microgels were also applied as the templates for polypyrrole deposition. When crosslinked PVME microgels were used in the oxidation polymerization of pyrrole, large PPy fibrils (appr. 400nm) were formed. Needle-like particles were formed due to the porous structure of microgels, which play a template role in the pyrrole polymerization process. When poly(VCL/AAEM) microgels were used as a template for oxidative polymerization of pyrrole, "raspberry-like" composite particles will be formed with PPy domains located in swollen hydropholic particle shell. Obtained stable composite microgels show similar thermal sensitivity as poly(VCL/AAEM) particles with fully reversible collapse-swelling properties. Increase of PPy content in composite particles increases conductivity of the composite material. The conductivity of composite particles prepared in water was much higher than that of prepared in water : ethanol mixtures. Furthermore, monodisperse PS-PEGMA particles, which were prepared in water medium by polymerization with sodium peroxydisulfate have been used as a template for deposition of polypyrrole (PPy). Obtained composite particles possess core-shell morphology where shell is composed out of small PPy nano-domains. The shell thickness can be varied by changing PPy load, controlling the overall template surface area in the system, and by influencing the pyrrole polymerization kinetics in presence of different oxidants. The last possibility provides also incorporation of different anions into polypyrrole shell. The stability of composite particles decreases gradually if the deposited PPy amount increases. It has been established that obtained particles are intrinsically coloured and the colour can be changed by the PS-PEGMA core size. Conductivity measurement shows that PS/PEGMA/PPy composite particles prepared by using phosphomolybdate as the oxidant are much more conductive than the particles prepared by the other two oxidants. The conductivity increases with the increase of PPy load in the system. Overall, the proper design of the template should give a possibility to control effectively the morphology, particle size and provide sufficient stability to the composite particles. Different morphologies, such as spherical, core-shell, raspberry and needle-like, with different particle size are expected to be available in different cases. By choosing the dopant anion or oxidation agent it is possible to vary the conductivity of the polymer. The stable water-based dispersions are expected to be used as additives for paint formulations, in electrorheology, microelectronic, ion-separation or disease diagnostics.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24462
Date02 February 2005
CreatorsLu, Yan
ContributorsAdler, Hans-Jürgen P., Knoll, Wolfgang, Zhu, Meifang
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds