Return to search

Biogeochemical Zonation in an Athabasca Oil Sands Composite Tailings Deposit Undergoing Reclamation Wetland Construction

As oil production increases in Alberta’s Athabasca Oil Sands Region (AOSR), optimization of tailings management processes will be integral to the successful reclamation of tailings-based environments. Syncrude Canada Ltd. has established an innovative dry-storage method for their wastes known as composite tailings (CT) that supports mine closure objectives by providing a base for terrestrial reclamation landscapes. Syncrude’s Sandhill Reclamation Fen is the first instrumented research wetland of its kind to be developed in the AOSR and it overlays a sand-capped composite tailings deposit in a retired open-pit mine site. This stratified sulfur-rich environment is highly anthropogenically altered and consists of three distinct zones: a constructed wetland, a 10m layer of sand, and 40m of CT. As oil sands tailings systems are becoming globally significant sulfur reservoirs due to their size, sulfur content, and diverse microbial communities, understanding the mechanisms behind H2S generation in novel tailings structures will help inform our understanding of sulfur-rich environments. This study is the first to characterize the sulfur biogeochemistry in each zone of the Sandhill Reclamation Fen deposit in an effort to establish the potential for microbial sulfur cycling and explore the mechanisms controlling H2S generation. Porewater ΣH2S(aq) was detected at all depths, increasing with depth from the surface of the wetland (<1.1 μM) and peaking in the sand cap (549 μM). Across all sampling trips, ΣH2S(aq) concentrations were consistently highest in the sand cap, with sampling-associated H2S gas concentrations in the wells reaching 104-180 ppm. Abundance of dissolved sulfate (0.14-6.97 mM) did not correlate to the distribution of ΣH2S, and dissolved organic carbon (21.47-127.72 mg/L) only positively correlated with the observed maxima of ΣH2S in the sand-cap. Identical sodium and chloride distributions in the sand and CT supported the model of upward migration of CT-derived porewater and fines into the sand cap. Functional metabolic enrichments established the ability of endemic microbial communities from all depths of the deposit to oxidize and reduce sulfur. Experimental microcosms demonstrated 1) the dependence of ΣH2S generation on the presence of fine particles; 2) stimulation of endemic microbial sulfur reduction through amendment with labile carbon and 3) increased generation of ΣH2S in the presence of thiosulfate over sulfate. Field and experimental results indicated that the bioaccessibility of recalcitrant organic carbon in the deposit likely controls rates of ΣH2S generation at depth. While the mechanisms relating CT-derived fines to ΣH2S in the sand cap are still unconstrained, the sand layer is clearly a bioreactive mixing-zone supporting optimal conditions for ΣH2S accumulation. These findings inform our understanding of biogeochemical sulfur cycling in novel oil sands reclamation deposits and will advise on-going optimization of tailings-based landscape management practices. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16341
Date11 1900
CreatorsReid, Michelle
ContributorsWarren, Lesley, School of Geography and Geology
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0118 seconds