Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from testing both the continuous and chopped fiber were incorporated into the design of a functionally graded hybrid continuous and chopped carbon fiber component, the manufacture of which resulted in zero waste prepreg material.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2679 |
Date | 01 December 2015 |
Creators | Warnock, Corinne Marie |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0061 seconds