Cryptography is the art of protecting information by encrypting the original message into an unreadable format. A cryptographic hash function is a hash function which takes an arbitrary length of the text message as input and converts that text into a fixed length of encrypted characters which is infeasible to invert. The values returned by the hash function are called as the message digest or simply hash values. Because of its versatility, hash functions are used in many applications such as message authentication, digital signatures, and password hashing [Thomsen and Knudsen, 2005].
The purpose of this study is to apply Huffman data compression algorithm to the SHA-1 hash function in cryptography. Huffman data compression algorithm is an optimal compression or prefix algorithm where the frequencies of the letters are used to compress the data [Huffman, 1952]. An integrated approach is applied to achieve new compressed hash function by integrating Huffman compressed codes in the core functionality of hashing computation of the original hash function.
Identifer | oai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-3597 |
Date | 01 April 2018 |
Creators | Devulapalli Venkata,, Lakshmi Narasimha |
Publisher | TopSCHOLAR® |
Source Sets | Western Kentucky University Theses |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses & Specialist Projects |
Page generated in 0.0017 seconds