Return to search

Experimental pressure loss analysis in a mini tube for a fully developed turbulent airflow. : Mini channels of lengths 22.5 mm to 150 mm in length with a constant diameter of 1.5 mm

The cooling systems in a gas turbine are especially important as the turbine blades and vanes are exposed to extreme temperatures. The relatively cool air is extracted from the compressors and fed to the turbines to cool the turbine blades. The manufacturing of these blades and channels used to cool is especially complicated using conventional manufacturing techniques. Additive Manufacturing (AM) gives the designer much more freedom to design core components. The AM technique currently explored is the Selective Laser Melting process (SLM). The surface area is exposed to the cooling airflow by using lattice structures which can be manufactured at relative ease using AM. This thesis will provide some insights into using AM parts for the cooling, by analyzing the pressure drop that could be expected from superalloys that are manufactured using AM. The surface roughness is an inherent property of the AM components therefore it would be interesting to analyze a turbulent flow through AM channels (CM247LC and INCONEL 939). The thesis deals with turbulent flows as the airflow used for cooling in the gas turbine is most likely turbulent.  The friction factor (Darcy–Weisbach friction factor) is used to relate the impact of the surface roughness to the pressure drop. The results from the previous experiments are contrasted as the flow in the previous experiments was assumed to be fully developed but in reality, it was not. And the accuracy of the previous results to the actual fully developed flow will shed some light on the feasibility of the flow analysis techniques used in the previous experiments. It is found that the previous experimental results for the CM247LC TPs have good agreement with current experimental results but INCONEL 939 exhibits significant deviation. The possible reasons for the deviations are directly linked to the assumptions made to calculate the minor losses. The Test Pieces (TP) analyzed in this thesis have varying length to diameter (L/D) ratios and the impact of the variation of different L/D ratios is analyzed along with varying pressure ratios. Where the flow resistance increases with an increase in L/D and pressure ratio. The technique to accommodate the compressibility of the airflow is also explored in this thesis. Finally, reasons for the manifestation of anomalies are discussed. The probability of the compressibility effects of the airflow on the anomalies was found to be quite high, and concluding remarks are provided.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-184292
Date January 2022
CreatorsGhosh, Soumen
PublisherLinköpings universitet, Mekanisk värmeteori och strömningslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.004 seconds