Dans cette thèse, nous étudions les écoulements de fluides compressibles décrits par les équations de Navier-Stokes-Fourier dans les cas stationnaire et instationnaire et avec des conditions de bord assurant l’isolation thermique et mécanique du fluide. On commence par le cas stationnaire barotrope et des conditions de Navier à la frontière du domaine. La pression est donc de la forme p(%) = % où est appelé coefficient adiabatique et nous arrivons à montrer l’existence de solutions faibles pour > 1.On généralise ensuite ce résultat aux équations de Navier-Stokes-Fourier avec conduction de la chaleur et glissement (partiel ou total) au bord, toujours dans le cas stationnaire. On montre cette fois-ci l’existence de solutions faibles particulières appelées solutions entropiques variationnelles respectant l’inégalité d’entropie pour > 1 et l’existence de solutions faibles respectant le bilan de l’énergie totale au sens faible pour > 5/4. On travaille ensuite sur les écoulements instationnaires décrits par les équations de Navier-Stokes-Fourier sur une large variété de domaines non bornés, tout d’abord pour des conditions de bord d’adhérence puis pour des conditions de Navier à la frontière (ce qui restreintquelque peu la diversité des domaines non bornés admissibles). On arrive à montrer l’existence de solutions faibles particulières respectant l’inégalité d’entropie et une inégalité de dissipation remplaçant l’égalité de conservation d’énergie totale dans le volume qui n’a plus de sens dans les domaines non bornés. Par après, on met en place une inégalité dite d’entropie relative dont on montre qu’elle est respectée par certaines des solutions faibles exhibées auparavant. Ces solutions sont appelées solutions dissipatives. On parvient à prouver que pour chaque donnée initiale, il existe au moins une solution dissipative. Cette inégalité d’entropie relative nous permet de démontrer le principe d’unicité forte-faiblepour nos solutions dissipatives. Précisément, cela signifie qu’une solution dissipative et une solution forte issues des mêmes données initiales coïncident sur le temps maximal d’existence de la solution forte. La propriété d’unicité forte-faible donne un fondement à la notion de solution dissipative pour les domaines non bornés. / In this thesis, we study the Navier-Stokes-Fourier system describing the flow of compressible fluids both in the steady and unsteady case and we suppose that the fluid is thermally and mechanically isolated. We start with the case of a steady barotropic fluid and Navier boundary conditions. In this situation, the pressure law considered is of the form p(%) = %, where is called the adiabatic constant. We show the existence of weak solutions for > 1. We then extend this result to the complete Navier-Stokes-Fourier system with heat conductivity and slip or partially slip boundary conditions, once again in thesteady case. In this setup, we prove the existence of a specific type of weak solutions, called variationnal entropy solutions, which satisfy the entropy inequality for > 1 and the existence of weak solutions satisfying the conservation of total energy in its weak formulation for > 5/4. We then treat the unsteady flows described by the complete Navier-Stokes-Fourier system on a large class of unbouded domains, first with no-slip boundary conditions and then with the Navier boundary conditions which reduce the class of the admissible unbounded domains. We manage to prove the existence of a specific type of weak solutions verifying the entropy inequality and a dissipation inequality instead of the global conservation of total energy which is no more relevant in the unbounded domains. Afterwards, we establish a new inequality called relative entropy inequality and we show that it is satisfied by some of the weak solutions presented previously. These are called dissipative solutions. Next we show that for any given initial data there exists at least one dissipative solution. This observation allows us toperform the proof of the weak-strong uniqueness principle in the class of dissipative solutions. Precisely, it means that a dissipative solution and a classical one emanating from the same initial data coincide as long as the latter exists. The weak-strong uniqueness property justifies the concept of dissipative solutions in the situation of unbounded domains.
Identifer | oai:union.ndltd.org:theses.fr/2013TOUL0002 |
Date | 27 June 2013 |
Creators | Jesslé, Didier |
Contributors | Toulon, Novotný, Antonin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds