Return to search

Numerical modelling of deformation within accretionary prisms

A two dimensional continuous numerical model based on Discrete Element Method is used to investigate the behaviour of accretionary wedges with different basal frictions. The models are based on elastic-plastic, brittle material and computational granular dynamics, and several characteristics of the influence of the basal friction are analysed. The model results illustrate that the wedge’s deformation and geometry, for example, fracture geometry, the compression force, area loss, displacement, height and length of the accretionary wedge etc., are strongly influenced by the basal friction. In general, the resulting wedge grows steeper, shorter  and higher, and the compression force is larger when shortened  above a larger friction basement.  Especially, when there is no basal friction, several symmetrical wedges will distribute symmetrically in the domain. The distribution of the internal stress when a new accretionary prime is forming is also studied. The results illustrate that when the stress in a certain zone is larger than a critical number, a new thrust will form there.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-176502
Date January 2012
CreatorsZhang, Ting
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationIT ; 12 022

Page generated in 0.0019 seconds