Return to search

Investigation of the acoustic impedance variations of the upper shallow marine sandstone reservoirs in the Bredasdorp basin, offshore South Africa

Philosophiae Doctor - PhD / Investigation of the acoustic impedance variations in the upper shallow marine sandstone reservoirs was extensively studied from 10 selected wells, namely: F-O1, F-O2, E-M4, E-CN1, E-G1, E-W1, F-A10, F-A11, F-A13, and F-L1 in the Bredasdorp Basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine interval with the purpose of conducting a regional study to assess the variations in the acoustic impedance across the reservoirs using wireline log and core data. The datasets used in this study were geophysical wireline logs, conventional core analysis, geological well completion reports, core plugs, and core samples. The physical rock properties such as lithology, fluid type, and hydrocarbon bearing zone were identified while different parameters like the volume of clay, porosity, and water saturation were quantitatively estimated. The reservoirs were penetrated at a different depth ranging from a shallow depth of 2442m at well F-L1 to a deeper depth of 4256.7m at well E-CN1. The average volume of clay, average effective porosity from wireline log, and average water saturation ranged from 8.6%- 43%, 9%- 16% and 12%- 68%, respectively. Porosity distribution was fairly equal across the field from east to west except in well F-A10, F-A13, and F-A11 where a much higher porosity was shown with F-A13 showing the highest average value of 16%. Wells E-CN1, E-W1, F-O1, F-L1 and E-G1 had lower porosity with E-CN1 showing the lowest average value of 9%.
The acoustic properties of the reservoirs were determined from geophysical wireline logs in order to calculate acoustic impedance and also investigate factors controlling density and acoustic velocities of these sediments. The acoustic impedance proved to be highest on the central to the western side of the field at E-CN1 with an average value of 11832 g/cm3s whereas, well F-A13 reservoir in the eastern side of the field proved to have the lowest average acoustic impedance of 9821 g/cm3s. There was a good linear negative relationship between acoustic impedance and porosity, compressional velocity vs porosity and porosity vs bulk density. A good linear negative relationship between acoustic impedance and porosity was obtained where the reservoir was homogenous, thick sandstone. However, interbedded shale units within the reservoir appeared to hinder a reliable correlation between acoustic impedance and porosity. The cross-plots results showed that porosity was one of the major factors controlling bulk density, compressional velocity (Vp) and acoustic impedance. The Gassmann equation was used for the determination of the effects of fluid substitution on acoustic properties using rock frame properties. Three fluid substitution models (brine, oil, and gas) were determined for pure sandstones and were used to measure the behaviour of the different sandstone saturations. A significant decrease was observed in Vp when the initial water saturation was substituted with a hydrocarbon (oil or gas) in all the wells. The value of density decreased quite visibly in all the wells when the brine (100% water saturation) was substituted with gas or oil. The fluid substitution affected the rock property significantly. The Vp slightly decreases when brine was substituted with water in wells F-A13, F-A10, F-O2, F-O1 F-A11, F-L1, and E-CN1. Wells E-G1, E-W1, and E-M4 contain oil and gas and therefore showed a notable decrease from brine to oil and from oil to gas respectively. Shear velocity (Vs) remained unaffected in all the wells. The acoustic impedance logs showed a decrease when 100% water saturation was replaced with a hydrocarbon (oil or gas) in all the wells. Clay presence significantly affects the behaviour of the acoustic properties of the reservoir rocks as a function of mineral type, volume, and distribution. The presence of glauconite mineral was observed in all the wells. Thirty-two thin sections, XRD and SEM/EDS from eight out of ten wells were studied to investigate lithology, diagenesis and the effect of mineralogy on porosity and acoustic properties (Compressional velocity and bulk density) within the studied reservoir units. Cementation (calcite and quartz), dissolution, compaction, clay mineral authigenesis, and stylolitization were the most significant diagenetic processes affecting porosity, velocity, and density.Well E-CN1 reservoir quality was very poor due to the destruction of intergranular porosity by extensive quartz and illite cementation, and compaction whereas well F-A13 show a highly porous sandstone reservoir with rounded monocrystalline quartz grain and only clusters of elongate to disc-like, authigenic chlorite crystals partly filling a depression within altered detrital grains.
Overall, the results show that the porosity, lithology mineralogy, compaction and pore fluid were the major factors causing the acoustic impedance variations in the upper shallow marine sandstone reservoirs. / 2021-09-01

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/7028
Date January 2019
CreatorsMagoba, Moses
ContributorsOpuwari, Mimonitu, Waldmann, Nicolas
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
RightsUniversity of the Western Cape

Page generated in 0.0025 seconds