Return to search

Tolerância diferencial ao alumínio em plantas do gênero Brachiaria: morfologia de raízes, sistema antioxidativo e alumínio trocável no apoplasto radicular / Differential aluminum tolerance in plants of Brachiaria genus: root system morphology, antioxidant system and exchangeable aluminum in root apoplast

Os vegetais apresentam variados mecanismos de defesa, os quais conferem tolerância a elementos considerados tóxicos, como o alumínio (Al). Em primeiro experimento, objetivou-se avaliar a tolerância diferencial ao Al em quatro plantas forrageiras do gênero Brachiaria (B. decumbens cv. Basilisk, B. brizantha cv. Marandu, B. brizantha cv. Piatã e B. brizantha cv. Xaraés), por meio da quantificação da área foliar; aspectos morfológicos do sistema radicular (comprimento total e superfície total de raízes); produção de biomassa de raízes e parte aérea; concentração, acúmulo e transporte de Al à longa distância; peroxidação lipídica em tecidos de folhas e raízes e concentração de H2O2 nas folhas. As concentrações de Al empregadas na solução nutritiva foram de 0; 0,44; 0,89 e 1,33 mmol L-1, as quais foram distribuídas conforme delineamento experimental de blocos completos ao acaso, utilizando-se esquema fatorial 4 x 4 (quatro doses de Al x quatro genótipos de Brachiaria), com quatro repetições. A atividade do Al3+ livre na solução nutritiva foi estimada utilizando o software GeoChem-EZ®, o qual evidenciou que cerca de 81% do Al estava disponível, considerando a variação nos valores de pH de 3,0 a 4,0. A adição de Al na solução nutritiva resultou na redução de parâmetros produtivos da parte aérea e do sistema radicular, além de aumentar a concentração e o acúmulo do metal nas raízes. Por intermédio de tais parâmetros, permitiu-se a seguinte classificação, quanto à tolerância diferencial ao Al: B. brizantha cv. Xaraés > B. decumbens cv. Basilisk >= B. brizantha cv. Piatã > B. brizantha cv. Marandu. No segundo experimento a B. brizantha cv. Marandu (menor tolerância) e a B. brizantha cv. Xaraés (maior tolerância) foram cultivadas em solução nutritiva e, em seguida, foram efetuadas avaliações referentes à morfologia e anatomia do sistema radicular (pêlos radiculares), por meio de microscopia de luz e microscopia eletrônica de varredura, determinação do Al no apoplasto e simplasto das raízes, bem como a quantificação da atividade de enzimas antioxidantes catalase (CAT), ascorbato peroxidase (APX), guaiacol peroxidase (GPOX) e glutationa redutase (GR), em folhas e raízes. Utilizaram-se as concentrações de Al na solução de 0 e 1,33 mmol L-1, as quais foram distribuídas conforme delineamento experimental de blocos completos ao acaso, utilizando-se esquema fatorial 2 x 2 (duas concentrações de Al x dois genótipos de Brachiaria), com oito repetições. As atividades das enzimas CAT, APX, GPOX e GR foram mais expressas em tecidos radiculares. O excesso de Al reduziu a atividade da CAT e da GPOX nas raízes de B. brizantha cv. Xaraés e da APX e GR nas raízes de B. brizantha cv. Marandu. Quanto à compartimentação do Al no sistema radicular, constatou-se que a maior parte do metal concentrou-se no simplasto radicular, para ambos os genótipos. Por sua vez, na condição de excesso do metal, a maior concentração de Al trocável no apoplasto radicular foi verificada no cultivar Xaraés, sendo 49% superior ao cultivar Marandu. Foram verificadas maiores injúrias na epiderme radicular, como microfissuras e descamação, no cultivar Marandu. Os resultados fornecem evidências de que os genótipos de Brachiaria apresentam distintas respostas ao excesso de Al, com maior ou menor eficiência, caracterizando a tolerância diferencial / A variety of plant defense mechanisms have been shown, which confer tolerance to elements considered toxics, such as aluminum (Al). The aim of the first experiment was to evaluate the differential aluminum tolerance in four forage plants of Brachiaria genus (B. decumbens cv. Basilisk, B. brizantha cv. Marandu, B. brizantha cv. Piatã and B. brizantha cv. Xaraés), by measuring leaf area; root system morphology (total root length and total root surface); quantifying roots and plant top biomass yield; the Al-concentration, uptake and Al-long distance transport; evaluating lipid peroxidation in roots and leaves tissues, as well as the H2O2 content in leaves. Aluminum rates used were 0; 0.44; 0.89 and 1.33 mmol L-1, which were distributed as randomized block design, using a factorial 4 x 4 (four Al rates x four Brachiaria genotypes), with four replications. The free Al3+ activity in the nutrient solution was estimated using the software GeoChem-EZ®, reveling that around 81% of Al was available, considering the pH range between 3.0 and 4.0. Al addition in the nutrient solution decreased the plant top and root dry matter yield, increased Al-concentration and uptake in the roots. Though all these parameters, this following rank - as related to differential Al tolerance - was done: B. brizantha cv. Xaraés > B. decumbens cv. Basilisk >= B. brizantha cv. Piatã > B. brizantha cv. Marandu. In the second experiment, B. brizantha cv. Marandu (lower Al tolerance) and B. brizantha cv. Xaraés (higher Al tolerance) were grown in nutrient solution, with 0 and 1.33 mmol L-1 Al-concentrations, which were distributed as randomized block design, using a factorial 2 x 2 (two Al rates x two Brachiaria genotypes), with eight replications. Root system morphology and anatomy (root hairs) evaluations by using light and scanning electron microscopy, the Al concentration in the apoplast and symplast of roots, as well as the antioxidant enzymes activities such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) were taken in the leaves and roots tissues. The CAT, APX, GPOX and GR activities were more expressed in root tissues than leaves tissues. Al toxicity decreased CAT and GPOX activities in roots of B. brizantha cv. Xaraés on the one hand; and the other the APX and GR activity in B. brizantha cv. Marandu roots. As regards to Al partition in root system compartments, it was found that most of metal was accumulated in symplast, to both genotypes. On the other hand, in metal excess condition, the highest Al concentration on the root apoplast was verified to Xaraés cultivar, being 49% higher than those quantified on the Marandu cultivar. Major injuries were found in the root epidermis, as ruptures and small clefts, which in turn have induced significant structural changes on the root surface of Marandu genotype. Taken together, the results provide evidences that Brachiaria genotypes have distinct responses to Al excess, with greater or lesser efficiency mechanism, featuring differential Al-tolerance

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-12122014-110257
Date29 October 2014
CreatorsFelipe Furlan
ContributorsJosé Lavres Junior, Renato de Mello Prado
PublisherUniversidade de São Paulo, Ciências (Energia Nuclear na Agricultura), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds