Return to search

T?cnicas de computa??o natural para segmenta??o de imagens m?dicas

Made available in DSpace on 2014-12-17T14:55:35Z (GMT). No. of bitstreams: 1
JacksonGS.pdf: 1963039 bytes, checksum: ed3464892d7bb73b5dcab563e42f0e01 (MD5)
Previous issue date: 2009-09-28 / Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth / Segmenta??o de imagens ? um dos problemas de processamento de imagens que merece especial interesse da comunidade cient?fica. Neste trabalho, s?o estudado m?todos n?o-supervisionados para detec??o de algomerados (clustering) e reconhecimento de padr?es (pattern recognition) em segmenta??o de imagens m?dicas M?todos baseados em t?cnicas de computa??o natural t?m se mostrado bastante atrativos nestas tarefas e s?o estudados aqui como uma forma de verificar a sua aplicabilidade em segmenta??o de imagens m?dicas. Este trabalho trata de implementa os m?todos GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm) PSOKA (Algoritmo de clustering baseado em PSO (Particle Swarm Optimization) e K means) e PSOFCM (Algoritmo de clustering baseado em PSO e FCM (Fuzzy C Means)). Al?m disso, como forma de avaliar os resultados fornecidos pelos algoritmos s?o utilizados ?ndices de valida??o de clustering como forma de medida quantitativa Avalia??es visuais e qualitativas tamb?m s?o realizadas, principalmente utilizando dados do sistema BrainWeb, um gerador de imagens do c?rebro, como ground truth

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/15282
Date28 September 2009
CreatorsSouza, Jackson Gomes de
ContributorsCPF:53820126449, http://lattes.cnpq.br/9745845064013172, Martins, Allan de Medeiros, CPF:01979076448, http://lattes.cnpq.br/4402694969508077, Carvalho, Bruno Motta de, CPF:79228860472, http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791070J6, Costa, Jos? Alfredo Ferreira
PublisherUniversidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Engenharia El?trica, UFRN, BR, Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds