A partir da reestruturação dos serviços públicos de energia elétrica, foi criada uma série de novas ferramentas regulatórias, simulando e/ou criando um ambiente competitivo, para que as empresas busquem continuamente a evolução de seus indicadores e custos. Com a edição da Resolução nº 024, de 27 de janeiro de 2000, a Agência Nacional de Energia Elétrica (ANEEL) atualizou a regulamentação dos aspectos relativos à continuidade do fornecimento de energia elétrica. As metas de continuidade são definidas através do cluster ao qual cada conjunto de consumidores está vinculado. Os conjuntos são agrupados pelas suas características físicas: área, km de rede primária, número de consumidores, potência de transformadores instalada e consumo médio do conjunto. Um dos pontos focais desta resolução é a possibilidade de uma concessionária agrupar unidades consumidoras, considerando as características técnicas específicas de seu sistema elétrico. Desta forma, o agente regulador permite que as concessionárias modifiquem seus conjuntos de consumidores, desde que fiquem evidenciadas vantagens técnicas, econômicas e sociais da nova proposta em relação ao critério vigente de agrupamento. Visando aperfeiçoar a utilização dos recursos, direcionando as ações para modicidade tarifária e considerando a capacidade de prover condições de atendimento homogêneo, este trabalho busca combinar os consumidores de uma concessionária em conjuntos que minimizem o risco de multa e a necessidade de investimentos nas redes. Este é um problema semelhante ao de redistribuição de eleitores nos distritos de votação nos EUA, conhecido como Political Districting. Para resolver o problema de explosão combinatória resultante das possíveis combinações de áreas e minimizar as multas, o modelo proposto neste trabalho utiliza técnicas de computação evolutiva. A metodologia é ilustrada alterando os 419 conjuntos iniciais de uma concessionária por meio de um algoritmo genético (AG) e um algoritmo imunológico (AI) que otimiza o resultado proposto, minimizando o risco de multas pelo não cumprimento das metas de continuidade. / From the restructuring of the Public Electric Power Sector, new regulatory tools were devised to simulate and create a competitive environment for companies to continuously seek targets for their indicators and costs. With the issue of Resolution nº 024 of January 27, 2000, the National Agency of Electric Energy (ANEEL) updated the rules in dealing with electricity supply continuity. The goals related to the continuity of service are defined through the cluster in which each set of consumers is bound. Consumers are grouped by their physical characteristics: area, length (km) of primary network, the number of consumers, power transformers installed capacity and average consumption. ANEEL allows the utilities to modify their sets of consumers, whenever the technical advantages, economic and social implications of the new proposal in relation to the current criterion of grouping become evident. Considering the possibility of avoiding unnecessary investments in networks, burdening the distribution tariff, this paper attempts to combine the consumers of a utility in sets that minimize the risk of penalties and network investments. This problem is similar to the redistribution in voting districts in the U.S., known as Political Districting. In order to solve the combinatorial explosion problem resulting from the possible combinations of areas and minimization of penalties, the model proposed in this paper uses evolutionary computation techniques. The case study alters the initial 419 sets of consumers of a utility through a genetic algorithm and an artificial immune algorithm, which were proposed to optimize the outcome, minimizing the risk of penalties in not meeting the goals related to continuity of service.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19072011-163832 |
Date | 11 April 2011 |
Creators | Araújo, Renato José Pino de |
Contributors | Kagan, Nelson |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds