Return to search

Funções parciais recursivas e funções parcialmente Turing-computáveis: uma prova de equivalência

Submitted by Maike Costa (maiksebas@gmail.com) on 2017-09-20T12:52:54Z
No. of bitstreams: 1
arquivototal.pdf: 1155001 bytes, checksum: c813651173e6bf037a98328b32bc7d5a (MD5) / Made available in DSpace on 2017-09-20T12:52:54Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1155001 bytes, checksum: c813651173e6bf037a98328b32bc7d5a (MD5)
Previous issue date: 2016-10-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In the thirties of the last century, several formal versions for the intuitive notion of algorithmic function were offered. Among them, the version of the recursive functions and the version of the Turing-computable functions. Posteriorly, such versions were extended in order to also include the partial algorithmic functions, giving rise, in this way, to the version of the partial recursive functions and to the version of the partially Turing-computable functions. In this context, this research, located into Computability Theory domain and built in the light of theoretical assumptions of Davis (1982), Mendelson (2009), Dias & Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), among others, is intended to rebuild the proof that the given formal versions referred to the intuitive notion of partial algorithmic function, despite being conceptually distinct, they are extensionally equivalents in the sense that they determine the same set of theoretical-numerical functions. As a part of this rebuilding, we shall prove, in na unprecedented way, using quintuples, that every partial recursive function is partially Turing-computable. In the literature, this theorem is proved by means of a set of quadruples. However, defining a lower cardinality set constructed by quintuples, it is possible to prove it in a smaller time interval, which representes a gain from the computational point of view. Besides presenting this alternative proof, posed by the Church-Turing thesis that the set of partial recursive functions includes all the partial algorithmic functions, we shall investigate if this set itself and its infinite subsets are or are not algorithmic. In this survey, we shall demonstrate, in arithmetical terms, with the aid of Rice‟s theorem, that although the set of partial recursive functions is algorithmic, all its subsets which are different from the empty set are not, among which are the set of recursive functions and the set of primitive recursive functions. / Na década de 30 do século passado, foram oferecidas várias versões formais para a noção intuitiva de função algorítmica. Dentre elas, a versão das funções recursivas e a versão das funções Turing-computáveis. Posteriormente, tais versões foram estendidas a fim de abranger também as funções parciais algorítmicas, dando origem, deste modo, à versão das funções parciais recursivas e à versão das funções parcialmente Turing-computáveis. Nesse contexto, esta pesquisa, situada dentro do domínio da Teoria da Computabilidade e construída à luz dos pressupostos teóricos de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), entre outros, destina-se a reconstruir a prova de que as referidas versões formais dadas para a noção intuitiva de função parcial algorítmica, apesar de conceitualmente distintas, são extensionalmente equivalentes no sentido de que elas determinam o mesmo conjunto de funções numéricas. Como parte desta reconstrução, provaremos, de modo inédito, mediante o uso de quíntuplas, que toda função parcial recursiva é parcialmente Turing-computável. Na literatura especializada, esse teorema é provado por meio de um conjunto de quádruplas. Porém, definindo um conjunto de menor cardinalidade constituído por quíntuplas, é possível prová-lo em um intervalo menor de tempo, o que representa um ganho do ponto de vista computacional. Além de apresentar essa prova alternativa, posto pela Tese de Church-Turing que o conjunto das funções parciais recursivas contém todas as funções parciais algorítmicas, investigaremos se ele próprio e os seus infinitos subconjuntos são ou não algorítmicos. Nesta investigação, demonstraremos, em termos aritméticos, com o auxílio do Teorema de Rice, que embora o conjunto das funções parciais recursivas seja algorítmico, todos os seus subconjuntos diferentes do conjunto vazio não o são, dentre os quais estão o conjunto das funções recursivas e o conjunto das funções recursivas primitivas.

Identiferoai:union.ndltd.org:IBICT/oai:tede.biblioteca.ufpb.br:tede/9586
Date24 October 2016
CreatorsMelo, Gustavo Cavalcanti
ContributorsDias, Matias Francisco
PublisherUniversidade Federal da Paraíba, Programa de Pós-Graduação em Filosofia, UFPB, Brasil, Filosofia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFPB, instname:Universidade Federal da Paraíba, instacron:UFPB
Rightsinfo:eu-repo/semantics/openAccess
Relation-8305327606432166393, 600, 600, 600, 600, -539602068144939234, -672352020940167053, 2075167498588264571

Page generated in 0.0025 seconds