Return to search

Convergence of regulatory mutations into oncogenic pathways across multiple tumor types

Thesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 65-74). / Cancer sequencing efforts have largely focused on profiling somatic variants in the protein-coding genome and characterizing their functional impact. In this study, we develop a computational pipeline to identify non-coding mutational drivers across multiple tumor types. We describe the non-coding mutational profiles of 854 samples, spread across 15 tumor types, in the context of their respective tissue type-specific reference epigenomes, using recent pan-cancer whole-genome sequencing data. We develop a novel method to detect significantly recurrent non-coding mutations by reestimating the background mutation density while adjusting for epigenomic covariates. Existing databases on enhancer-gene links allow us to capture the convergence of disparate mutations onto downstream target genes. We then systematically identify key immunomodulatory and tumor-suppressive genes enriched for non-coding mutations in their regulatory neighborhood and evaluate these in a pan-cancer context. Taken together, we show that low-frequency alterations converge into high-frequency recurrent events on downstream targets through tissue-specific regulatory interactions. / by Karthik Murugadoss. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/111510
Date January 2017
CreatorsMurugadoss, Karthik
ContributorsManolis Kellis., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format74 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0017 seconds