Return to search

Deterministic Parallel Global Parameter Estimation for a Model of the Budding Yeast Cell Cycle

Two parallel deterministic direct search algorithms are combined to find improved parameters for a system of differential equations designed to simulate the cell cycle of budding yeast. Comparing the model simulation results to experimental data is difficult because most of the experimental data is qualitative rather than quantitative. An algorithm to convert simulation results to mutant phenotypes is presented. Vectors of the 143 parameters defining the differential equation model are rated by a discontinuous objective function. Parallel results on a 2200 processor supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two. A second formulation is presented that uses a system of smooth inequalities to evaluate the phenotype of a mutant. Preliminary results of this formulation are given. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33360
Date18 August 2006
CreatorsPanning, Thomas D.
ContributorsComputer Science, Watson, Layne T., Tyson, John J., Shaffer, Clifford A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationthesis.pdf

Page generated in 0.0018 seconds