Return to search

The evaluation, development, and application of the correlation consistent basis sets.

Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled cluster method including single, double, and quasiperturbative triple excitations [CCSD(T)] and the B3LYP density functional method was examined. The impact of relativistic corrections on these molecular properties was determined utilizing the Douglas-Kroll (cc-pVnZ-DK) and pseudopotential (cc-pVnZ-PP) forms of the correlation consistent basis sets. This work was extended to the characterization of molecular properties of novel chemically bonded krypton species, including HKrCl, FKrCF3, FKrSiF3, FKrGeF3, FKrCCF, and FKrCCKrF, and provided the first evidence of krypton bonding to germanium and the first di-krypton system. For second-row (Al-Ar) species, the construction of the core-valence correlation consistent basis sets, cc-pCVnZ was reexamined, and a revised series, cc-pCV(n+d)Z, was developed as a complement to the augmented tight-d valence series, cc-pV(n+d)Z. Benchmark calculations were performed to show the utility of these new sets for second-row species. Finally, the correlation consistent basis sets were used to study the structural and spectroscopic properties of Au(CO)Cl, providing conclusive evidence that luminescence in the solid-state can be attributed to oligomeric species rather than to the monomer.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc5484
Date12 1900
CreatorsYockel, Scott
ContributorsWilson, Angela K., Schwartz, Martin, Omary, Mohammad, Wheeler, Ralph A., Cundari, Thomas R.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Yockel, Scott, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0016 seconds