Return to search

Nutraceuticals based computational medicinal chemistry

In recent years, the edible biomedicinal products called nutraceuticals have been becoming more popular among the pharmaceutical industries and the consumers. In the process of developing nutraceuticals, in silico approaches play an important role in structural elucidation, receptor-ligand interactions, drug designing etc., that critically help the laboratory experiments to avoid biological and financial risk. In this thesis, three nutraceuticals possessing antimicrobial and anticancer activities have been studied. Firstly, a tertiary structure was elucidated for a coagulant protein (MO2.1) of Moringa oleifera based on homology modeling and also studied its oligomerization that is believed to interfere with its medicinal properties. Secondly, the antimicrobial efficiency of a limonoid from neem tree called ‘azadirachtin’ was studied with a bacterial (Proteus mirabilis) detoxification agent, glutathione S-transferase, to propose it as a potent drug candidate for urinary tract infections. Thirdly, sequence specific binding activity was analyzed for a plant alkaloid called ‘palmatine’ for the purpose of developing intercalators in cancer therapy. Cumulatively, we have used in silico methods to propose the structure of an antimicrobial peptide and also to understand the interactions between protein and nucleic acids with these nutraceuticals. / <p>QC 20130531</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-122681
Date January 2013
CreatorsRajarathinam, Kayathri
PublisherKTH, Teoretisk kemi och biologi, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-BIO-Report, 1654-2312 ; 2013:11

Page generated in 0.0024 seconds