Return to search

Optimising structured P2P networks for complex queries

With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:618806
Date January 2014
CreatorsFurness, Jamie R.
ContributorsKolberg, Mario
PublisherUniversity of Stirling
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1893/21015

Page generated in 0.0019 seconds