L’optimisation de l’incorporation et de la libération de principes actifs dans les produits formulés constitue un des enjeux majeurs des industries pharmaceutiques et cosmétiques. L'objectif principal de notre étude est de proposer un modèle prédictif de la diffusion de petites sondes au sein des émulsions concentrées. Pour cela, il a fallu considérer à la fois la formulation d’émulsions concentrées stables et leur caractérisation rhéologique et structurelle ainsi que la prédiction des paramètres de transfert des sondes au sein des émulsions concentrées. On entend par paramètres de transfert, tous les paramètres permettant de caractériser les différents mécanismes de transfert de sondes dans les émulsions concentrées pris en compte dans notre système, à savoir le coefficient de diffusion dans les phases continue et dispersée, le coefficient de transfert à l’interface eau/huile, le coefficient de partage à l’équilibre de la sonde entre les deux phases de l’émulsion. Une nouvelle approche de caractérisation de la structure des émulsions concentrée a permis l’obtention des paramètres importants de structure (taille des gouttes et épaisseur du film de la phase continue). L’étude détaillée des mécanismes et processus diffusionnels est réalisée avec la prise en compte des résultats liés à la caractérisation structurelle du système d’étude. Ainsi, un modèle de diffusion fondé sur une approche phénoménologique est proposé pour prédire l'évolution des profils de concentration de la sonde dans les émulsions concentrées. Les cinétiques expérimentales de libération des sondes sont comparables à celles simulées par le modèle sans paramètres ajustables. Cette comparaison montre une bonne adéquation entre le modèle de diffusion et l’expérience / In the field of controlled release technology for new drugs, models that can predict its delivery during application are important for device design. The main objective of this work is to develop a predictive model able to describe the drug delivery from highly concentrated water-in-oil emulsions. These systems consist of deformed droplets dispersed in a continuous film. Their structure’s characteristics make them favourable for their use as releasing devices. A combination of different transfer mechanisms has been implemented in a mathematical model in order to simulate release experiments under different operating conditions (volume fraction, oil/surfactant ratio). A sensitivity analysis has been performed to point out the most relevant parameters affecting the drug’s release: drug partition and diffusion coefficients. Partition coefficient of the drug for different surfactant concentrations has been obtained through a predictive thermodynamic model UNIFAC, and the diffusion coefficient using Chang and Wilke equations in addition to the Stefan- Maxwell development. An original and simple technique has been used to determine indirectly the mean droplet size of the concentrated emulsions, through measurements of continuous phase’s thickness by analysis of incoherent polarized steady light transport through emulsion samples. In a general view, the diffusion model proposed for small drug diffusion in concentrated emulsions, which was first proposed for diluted emulsions, predicts successfully the evolution of mandelic acid concentrations during release experiments undertaken in perfect sink conditions
Identifer | oai:union.ndltd.org:theses.fr/2011INPL083N |
Date | 14 November 2011 |
Creators | Fersadou, Hala |
Contributors | Vandoeuvre-les-Nancy, INPL, Choplin, Lionel, Castel, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds