Concentrating solar power plants can integrate cost-effective thermal energy storage systems and thereby supply controllable power on demand, an advantage against other renewable technologies. Storage integration allows a solar thermal power plant to increase its load factor and to shift production to periods of peak demand. It also enables output firmness, providing stability to the power block and to the grid. Thus, despite the additional investment, storage can enhance the performance and economic viability of the plants. However, the levelized cost of electricity of these plants yet remains higher than for other technologies, so projects today are only viable through the provision of incentives or technology-specific competitive bid tenders. It is the variability of the solar resource, the myriad roles that storage can assume, and the complexity of enhancing the synergies between the solar field, the storage and the power block, what makes the development of adequate policy instruments, design and operation of these plants a challenging process. In this thesis a comprehensive methodology for the pre-design and analysis of concentrating solar power plants is presented. The methodology is based on a techno-economic modeling approach that allows identifying optimum trade-off curves between technical, environmental, and financial performance indicators. A number of contemporary plant layouts and novel storage and hybridization concepts are assessed to identify optimum plant configurations, in terms of component size and storage dispatch strategies. Conclusions highlight the relevance between the sizing of key plant components, the operation strategy and the boundaries set by the location. The interrelation between critical performance indicators, and their use as decisive parameters, is also discussed. Results are used as a basis to provide recommendations aimed to support the decision making process of key actors along the project development value chain of the plants. This research work and conclusions are primarily meant to set a stepping stone in the research of concentrating solar power plant design and optimization, but also to support the research towards understanding the value of storage in concentrating solar power plants and in the grid. / Koncentrerad solkraft erbjuder möjligheten att integrera kostnadseffektiv termisk energilagring och därmed behovsstyrd kraftkontroll. Detta är en viktig fördel jämfört med andra förnybara energiteknologier. Lagringsintegration tillåter solkraftsanläggningar att öka sin lastfaktor och skifta produktion till tider med största efterfrågan. Vidare möjliggör lagring fast elproduktion vilket leder till förbättrad nät- och kraftturbinstabilitet. Därför kan termisk lagring öka anläggningsprestanda och ekonomiskt värde trots ökande initiala kapitalkostnader. I termer av specifik elproduktionskostnad (LCOE) ligger koncentrerade solkraftsanläggningar med lagring fortfarande högre än andra kraftteknologier och anläggningsprojekt blir endast lönsamma genom subventionsmodeller eller teknologispecifika konkurrensutsatta anbudsförfaranden. Att hitta adekvata policylösningar och optimala design och operationsstrategier är en utmanande process eftersom det gäller att hitta rätt balans mellan variabel solinstrålning, lagring av energi och tid för produktion genom optimal design och operation av solmottagarfält, kraftblock och lagringskapacitet. I denna avhandling presenteras en omfattande metodik för pre-design och analys av koncentrerande solkraftverk. Metodiken baseras på en tekno-ekonomisk modelleringsansats som möjliggör identifiering av optimala avvägningssamband för tekniska, ekonomiska och miljöprestanda indikatorer. Metodiken tillämpas på ett antal moderna anläggningslayouter och lagrings- och hybridiseringskoncept för att identifiera optimal kraftanläggningsdesign i termer av komponentprestanda och lagringsanvändningsstrategier. I slutsatsen poängteras relevansen av att hitta rätt storlek på nyckelkomponenter i relation till lagringsstrategi och randvillkoren som ges av konstruktionsläget för optimal ekonomisk och miljömässig prestanda. Resultaten används för att formulera rekommendationer till nyckelaktörer i beslutsprocessen genom hela kraftanläggningens värdekedja från politisk beslutsfattare till anläggningsingenjör. Forskningen och slutsatserna i detta arbete skall i första hand ta ett steg framåt för optimering och design av solkraftsanläggningar men även tillhandahålla en metodik för utvärdering av lagringslösningar och dess specifika värde för solkraftsanläggningar och elnätet. / <p>QC 20160829</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-191339 |
Date | January 2016 |
Creators | Guédez, Rafael |
Publisher | KTH, Kraft- och värmeteknologi, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-KRV, 1100-7990 ; 2016:01 |
Page generated in 0.0022 seconds