Return to search

Time-dependent cracking and crack control in reinforced concrete structures

Due to the relatively low tensile strength of concrete, cracks are inevitable in reinforced concrete structures. Therefore, studying the cracking behaviour of reinforced concrete elements and controlling the width of cracks are necessary objectives both in research and in design. The introduction of higher strength reinforcing steel has exacerbated the problem of crack control. Using higher strength steel, means less steel is required for a given structure to satisfy the strength requirements. The stiffness after cracking is reduced and wider crack widths will occur under normal service loads. Unserviceable cracking may encourage corrosion in the reinforcement and surface deterioration, and may lead to long term problems with durability. Indeed excessive cracking results in a huge annual cost to the construction industry because it is the most common cause of damage in concrete structures. In this study cracking caused by both shrinkage and external loads in reinforced concrete members is examined experimentally and analytically. The mechanisms associated with cracking and the factors affecting the time-varying width and spacing of both direct tension cracks due to restrained shrinkage deformation and flexural cracks due to the combined effects of constant sustained service loads and shrinkage are examined. Laboratory tests on eight fully restrained slab specimens were conducted for up to 150 days to measure the effects of drying shrinkage on the time-dependent development of direct tension cracks due to restrained deformation. The effect of varying the quantity, diameter, and spacing of reinforcing steel bars was studied. In addition, an analytical model previously developed without experimental verification by Gilbert (1992) to study shrinkage cracking was modified and recalibrated. A second series of tests on twenty four prismatic, singly reinforced concrete beams and slabs subjected to monotonically increasing loads or to constant sustained service loads for up to 400 days, were also conducted. The effects of steel area, steel stress, bar diameter, bar spacing, concrete cover and shrinkage were measured and quantified. An analytical model is presented to simulate instantaneous and time-dependent flexural cracking. The tension chord model (Marti et al, 1998) is modified and used in the proposed model to simulate the tension zone of a flexural member and the time-dependent effects of creep and shrinkage are included. The analytical predictions of crack width and crack spacing are in reasonably good agreement with the experimental observations.

Identiferoai:union.ndltd.org:ADTP/187978
Date January 2005
CreatorsNejadi, Shamsaddin, Civil & Environmental Engineering, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. School of Civil and Environmental Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Shamsaddin Nejadi, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0719 seconds