The research objective was to develop a new competitively priced, high strength macrosynthetic fiber for concrete reinforcement. Mechanical bond properties were examined through aligned and inclined pullout testing. Variables involved in optimizing these properties included materials, fiber cross section, and other changes made through manufacturing processes. In addition to extensive pullout testing, improvements to fiber properties were explored through tensile testing, creep testing, and fiber performance in concrete mixtures. Practical considerations were also made, such as manufacturing processes, cost, and workability. Properties of synthetic microfibers were also considered for use in engineered cementitious composites. Synthetic macrofibers containing PVDF demonstrated high bond strength in pullout testing. Fibers demonstrating the highest performance in FRC testing were those with additional mechanical anchorage such as fibrillation or embossment. EVA as an additive did not exhibit increased interfacial bond, but further research was recommended. Further research on deformed fibers containing PVDF was also recommended.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/15716 |
Date | 05 July 2011 |
Creators | O'Connell, Shannon |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Page generated in 0.0014 seconds