Writing concurrent programs using shared memory causes many programmers much trouble, due primarily to unsafe semantics. Memory corruption, race conditions, deadlocks, and even livelocks are trivially easy to introduce into a program and painful to hunt down due the nearly infinite possible interleavings of instructions between the threads.
Undergraduate curricula traditionally introduce students to the idea of shared memory multithreading in a systems programming or operating systems class, but rarely expose them to any alternate models of concurrent programming. This leaves them with the idea that shared memory is the only way to do concurrent programming.
After students were exposed to alternate models, they came to prefer them to the standard shared memory model. This happened despite their distaste of the programming language that was utilized in performing the study. The students also expressed interest in alternate models of concurrency being taught in the computer science curricula at WPI.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1328 |
Date | 26 April 2011 |
Creators | Lieb, Christopher |
Contributors | Gary F. Pollice, Advisor, Micha Hofri, Reader, Craig E. Wills, Department Head |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0019 seconds