L'interférométrie atomique a démontré sa capacité à effectuer des mesures de grande précision, notamment pour la réalisation de capteurs inertiels, les tests de physique fondamentale ou la mesure de constantes fondamentales. Une piste pour l'amélioration de la sensibilité des interféromètres atomiques est la réduction de la dispersion en vitesse de la source en utilisant un ensemble d'atomes ultra-froids pour augmenter le temps d'interrogation des atomes et accroitre la séparation spatiale entre les bras de l'interféromètre. Un nouvel interféromètre atomique à bras séparés est en construction au Laboratoire Collisions Agrégats et Réactivité de Toulouse. Ce dispositif répond à deux objectifs. Premièrement sa conception a pour but l'étude et le développement de nouveaux types de sources de condensat de Bose-Einstein (C.B.E.) double espèce de rubidium 85 et 87 adaptées à l'interférométrie. Cette source de C.B.E. repose sur l'utilisation de puces pour la manipulation et le refroidissement des atomes. Cette technologie est compacte et consomment peu d'énergie, ce qui est adaptée aux applications spatiales. L'autre objectif est d'utiliser cet interféromètre pour tester la neutralité de la matière via l'effet Aharonov-Bohm scalaire. Dans ce manuscrit je commence par exposer et justifer les choix techniques fait lors du dimensionnement et de la construction de la source de C.B.E. double isotopes. Par la suite, je présente les premiers résultats expérimentaux accompagnés de simulations numériques et d'explications théoriques. Lors de la première étape de refroidissement laser nous produisons un nuage de rubidium 87 et 85 contenant 4 × 10^10 atomes à une température de 10 µK avec un taux de cycle de 1 s. A la suite du refroidissement laser 8 × 10^9 atomes sont chargés dans le piège magnétique millimétrique de surface. Différentes expériences de caractérisation sont réalisées et expliquées à la lumières de simulations numériques. L'étude des fréquences de piégeage et de la profondeur a révélé les limites du premier prototype de piège millimétrique que nous avons réalisé au laboratoire. Cependant ces développements expérimentaux et théoriques servent à développer et implémenter dans le dispositif une nouvelle génération de puce à échelle micrométrique. / Atom interferometry has shown its interest for high precision measurements, such as inertial sensors, tests of fundamental physics or fundamental constant measurements. A way to improve sensitivity of such device is to reduce speed dispersion of the atomic cloud. The use of ultra-cold atoms allows increasing the interogation time of atoms and the spatial separation between the interferometer arms. The building of a new atom interferometer with separated arms is ongoing in the laboratory "Collisions Agrégats et Réactivité" at Toulouse. This new setup must meet two objectives. One aim of its conception is to study and develop a new kind of double species Bose-Einstein condensate (B.E.C.) source for atom interferometry with rubidium 87 and 85. This B.E.C. source relies on atom chip technology to cool down and manipulate atoms. This technology is compact and low power consuming, therefore suitable for transportable applications in space. A second aim is to use this interferometer to fix new boundary on the experimental value of atom neutrality thanks to the scalar Aharonov-Bohm effect. In this manuscript I start by exposing and justifying technical choices made for the design of the double isotope B.E.C. source. Then I present the first experimental results compared with numerical simulations and theoretical explanations. During the first laser cooling stage we produce a cloud including 4 × 10^10 rubidium atoms of both isotopes (87 and 85) at 10 µK. This operation can be repeated every second. Following the laser cooling 8×10^9 atoms are loaded into a millimeter sized magnetic trap. Various experiments were performed to characterize the trap. Studies of the trap frequency and depth revealed the limitations of this first prototype. However these theoretical and experimental developments led to design and future implementation of a new generation of micro-chip in our apparatus.
Identifer | oai:union.ndltd.org:theses.fr/2017TOU30350 |
Date | 12 December 2017 |
Creators | Alibert, Julien |
Contributors | Toulouse 3, Guéry-Odelin, David, Gauguet, Alexandre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds