Many-body Coulomb interactions make understanding the complete excitation spectra of conjugated polymers a formidable task, and a variety of sophisticated experimental and theoretical techniques have been used in an attempt to elucidate their complicated electronic structure. It is thus crucial to have a intuitive, physical picture in order to interpret the wide range of available experimental data. We present the results of calculations within an exciton basis which allows for a simple pictorial description of all linear and nonlinear excitations in conjugated polymers, and settles a number of longstanding controversies. The exciton basis further allows us to justify the application of single configuration interaction (SCI) techniques to the understanding of nonlinear optical experiments in the low energy region. We show that SCI can give a clear, self-consistent picture of the photoexcitations in poly(para-phenylene vinylene), a conjugated polymer which has attracted much recent interest.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/282176 |
Date | January 1996 |
Creators | Chandross, Michael Evan, 1968- |
Contributors | Mazumdar, Sumitendra |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0145 seconds