Increasing cycling as a means of personal travel couldgenerate environmental benefits if associated with acorresponding decrease in car-based transport. In seeking topromote cycling in wintertime, it is desirable to understandhow important the road surface condition is compared to otherfactors in people's decision to cycle or not. In this thesis,the possibility of increasing the number of cyclists byimproving the winter maintenance servicelevel on cycleways isexamined. The attitudes towards cycling during winter ingeneral, and in relation to winter maintenance of cycleways inparticular, is studied through questionnaire surveys. Bicyclemeasurements are related to weather data from Road WeatherInformation System, in order to know the influence on cycleflow during winter from different weather factors. Fieldstudies are performed testing unconventional winter maintenancemethods, in order to see if a higher service level could beachieved on cycleways and if that would lead to an increase inwinter cycling frequency. The field studies are evaluatedthrough road condition observations, measurements of friction,bicycle counts, a questionnaire survey and interviews. A visualmethod to assess winter road conditions on cycleways isdeveloped, in order to compare the service levels achievedusing different winter maintenance methods. There is a clear difference in mode choice between seasons.With improved winter maintenance service level it could bepossible to increase the number of bicycle trips to work duringwinter with, at the most, 18 %, and decrease the number of cartrips with 6 %. However, it could not be concluded with bicyclemeasurements, that an enhanced service level in fact, generateda higher winter cycling frequency. To increase cycling during winter, snow clearance is themost important maintenance measure. Skid control is not assignificant for the choice of mode but is important to attendto for safety reasons. Winter road condition propertiesimportant both with regard to safety and accessibility ofcyclists, are icy tracks formed when wet snow freezes, snowdepths greater than about 3 cm of loose snow or slush,unevenness in a snow covered surface, loose grit on a baresurface. Weather factors with negative influence on winter cyclingfrequency, are temperatures below +5 ° C,precipitationand strong winds. Only the occurrence of precipitation, not theamount of rain or snow, is significant for the cycle flow. Lowtemperatures are more important in reducing the cycle flow thanprecipitation. Temperatures around 0 ° C seem to be extracritical for cyclists, probably due to the larger influence ofprecipitation and slippery road conditions at thesetemperatures. An unconventional method using a power broom for snowclearance and brine or pre-wetted salt for de-icing, provides ahigher service level than winter maintenance methodstraditionally used, but it is about 2 to 3 times moreexpensive. The method has great potential in regions, such assouthern Sweden, with low snow accumulations but with major iceformation problems. To assess the maintenance service level,the visual assessment method developed and tested in thisproject is adequate for the purpose, however, furtherimprovements are desirable. As a complement to the visualassessment, a Portable Friction Tester can be used to measurethe surface friction on cycleways during wintertime. Keywords:Cycleways, winter maintenance, maintenanceservice level, mode choice, winter cycling frequency, wintermaintenance equipment, winter road condition assessment,bicycle measurements, friction measurement.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3346 |
Date | January 2002 |
Creators | Bergström, Anna |
Publisher | KTH, Byggvetenskap, Stockholm : Byggvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-VT. FR, ; 02:04 |
Page generated in 0.002 seconds