Return to search

An Efficient Ranking and Classification Method for Linear Functions, Kernel Functions, Decision Trees, and Ensemble Methods

Structural algorithms incorporate the interdependence of outputs into the prediction, the loss, or both. Frank-Wolfe optimizations of pairwise losses and Gaussian conditional random fields for multivariate output regression are two such structural algorithms. Pairwise losses are standard 0-1 classification surrogate losses applied to pairs of features and outputs, resulting in improved ranking performance (area under the ROC curve, average precision, and F-1 score) at the cost of increased learning complexity. In this dissertation, it is proven that the balanced loss 0-1 SVM and the pairwise SVM have the same dual loss and the pairwise dual coefficient domain is a subdomain of the balanced loss 0-1 SVM with bias dual coefficient domain. This provides a theoretical advancement in the understanding of pairwise loss, which we exploit for the development of a novel ranking algorithm that is fast and memory efficient method with state the art ranking metric performance across eight benchmark data sets. Various practical advancements are also made in multivariate output regression. The learning time for Gaussian conditional random fields is greatly reduced and the parameter domain is expanded to enable repulsion between outputs. Last, a novel multivariate regression is presented that keeps the desirable elements of GCRF and infuses them into a local regression model that improves mean squared error and reduces learning complexity. / Computer and Information Science

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2925
Date January 2020
CreatorsGlass, Jesse Miller
ContributorsObradovic, Zoran, Vucetic, Slobodan, Zhang, Kai, Airoldi, Edoardo
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format130 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2907, Theses and Dissertations

Page generated in 0.0021 seconds