Les limites d'échelle de grands arbres aléatoires jouent un rôle central dans cette thèse.Nous nous intéressons plus spécifiquement au comportement asymptotique de plusieurs fonctions codant des arbres de Galton-Watson conditionnés. Nous envisageons plusieurs types de conditionnements faisant intervenir différentes quantités telles que le nombre total de sommets ou le nombre total de feuilles, avec des lois de reproductions différentes.Lorsque la loi de reproduction est critique et appartient au domaine d'attraction d'uneloi stable, un phénomène d'universalité se produit : ces arbres ressemblent à un même arbre aléatoire continu, l'arbre de Lévy stable. En revanche, lorsque la criticalité est brisée, la communauté de physique théorique a remarqué que des phénomènes de condensation peuvent survenir, ce qui signifie qu'avec grande probabilité, un sommet de l'arbre a un degré macroscopique comparable à la taille totale de l'arbre. Une partie de cette thèse consiste à mieux comprendre ce phénomène de condensation. Finalement, nous étudions des configurations non croisées aléatoires, obtenues à partir d'un polygône régulier en traçant des diagonales qui ne s'intersectent pas intérieurement, et remarquons qu'elles sont étroitement reliées à des arbres de Galton-Watson conditionnés à avoir un nombre de feuilles fixé. En particulier, ce lien jette un nouveau pont entre les dissections uniformes et les arbres de Galton-Watson, ce qui permet d'obtenir d'intéressantes conséquences de nature combinatoire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00818190 |
Date | 17 December 2012 |
Creators | Kortchemski, Igor |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds