Return to search

Elektricky vodivé kompozity na bázi druhotných surovin / Electrically conductive composites based on secondary raw materials

Electroconductive composites are modern materials that are commonly used in many industries such as the construction industry among others. For example these materials can be useful as sensors for monitoring changes in constructions. The aim of this thesis is the research of electrically conductive silicate composite based on secondary raw materials. The design of this composite is based on the development of its own mixtures and experimental verification of the effect of the structure. The introduction part consists of a detailed analysis of 15 materials. Samples of the 5 fine and 2 coarse electrically conductive fillers were tested. Composite with filler Condufit C4 was selected as representative for type of fine fillers. Composite with filler Supragraphite C300 was selected as representative for type of coarse fillers. The selection of the composites was based on the impedance of the fabricated composites with these fillers. Subsequently, the individual components of the primary mixture were substituted. The cement was replaced by high-temperature fly ash in the amount of 20, 30, and 40 %, the aggregate of a similar fraction was replaced by steel sawdust, and the primary electrically conductive fillers were replaced by secondary ones in the amount of 30 and 50 %. All proposed replacements reduced the impedance of the composite. The most effective replacement for impedance reduction was replacement with waste graphite (up to 92 % reduction), which also slightly improved the mechanical properties of the composite. The result of this thesis is an optimized electrically conductive composite based on secondary raw materials with a fine type of filler with 30 % replacement by waste graphite "odpad vysavač"which achieves an impedance of 5 ohms. The partial goal of this thesis is a verification of the influence of moisture on the impedance of composites. Results are significantly affected by moisture when using the coarse type of filler, when using the fine type are not.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:433564
Date January 2021
CreatorsBaránek, Šimon
ContributorsŠteffan,, Pavel, Černý, Vít
PublisherVysoké učení technické v Brně. Fakulta stavební
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0015 seconds