Return to search

Electrical and thermal properties of yttria-stabilised zirconia (YSZ)- based ceramic materials

Electrical and thermal conductivities of the yttria-stabilised zirconia/alumina (YSZ/Al2O3) composites and the yttria-zirconia-ceria (YSZ-CeO2) solid solutions are studied in this thesis. The electrical conductivity of the YSZ/Al2O3 composites decreases with an increase in the volume fraction of Al2O3 and exhibits typical percolation behaviour. The electrical conductivity of the YSZ/Al2O3 interface is higher than that of the YSZ grain boundary, but lower than that of the YSZ grains. The thermal conductivity of the YSZ/Al2O3 composites increases with an increase in the Al2O3 volume fraction, and it can be fitted well to the Maxwell theoretical model, which indicates the absence of obvious interfacial thermal resistances in the composites. The low interfacial thermal resistance of the YSZ/Al2O3 interface is due to the 'clean' and coherent nature of the YSZ/Al2O3 interface, along with the small difference between the elastic properties of YSZ and Al2O3. The electrical conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions has a 'V-shape' variation as a function of the mole ratio of CeO2 (x). In the ZrO2-rich region (x < 0.5), CeO2 doping increases the concentration of defect associates which limits the mobility of the oxygen vacancies; in the CeO2-rich region (x > 0.5), the increase of x increases the lattice parameter, which enlarges the free channel for oxygen vacancy migration. A comparison of the YSZ-CeO2 solid solutions with the YSZ-HfO2 series indicates the ionic radius of the tetravalent dopant determines the composition dependence of the ionic conductivity of the solid solutions.The thermal conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions also has a 'V-shape' variation as a function of the mole ratio of CeO2 (x), which indicates an incorporation of Zr4+ and Ce4+ can effectively decrease the thermal conductivity of the end members YSZ and yttria-doped ceria (YDC). In the ZrO2-rich region (0 ≤ x ≤ 0.5), the thermal conductivity is almost temperature independent; in the CeO2-rich region (0.5 ≤ x ≤ 1), it decreases obviously with increasing temperature. By calculating the phonon scattering coefficients, it is concluded that the composition dependence of the thermal conductivity in the ternary solid solutions is dominated by the mass difference between Zr and Ce at the cation sites, whereas the temperature dependence is determined by the order/disorder of oxygen vacancies at the anion sites.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:542786
Date January 2011
CreatorsYang, Fan
ContributorsXiao, Ping
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/electrical-and-thermal-properties-of-yttriastabilised-zirconia-ysz-based-ceramic-materials(82568afe-ffcb-4a38-9166-e5de83337763).html

Page generated in 0.0017 seconds