Return to search

Structural design of confined masonry buildings using artificial neural networks

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements.

Identiferoai:union.ndltd.org:PERUUPC/oai:repositorioacademico.upc.edu.pe:10757/656414
Date30 September 2020
CreatorsSicha Pillaca, Juan Carlos, Molina Ramirez, Alexander, Vasquez, Victor Arana
PublisherInstitute of Electrical and Electronics Engineers Inc.
Source SetsUniversidad Peruana de Ciencias Aplicadas (UPC)
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/article
Formatapplication/html
Source2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
Rightsinfo:eu-repo/semantics/embargoedAccess
Relationhttps://ieeexplore.ieee.org/document/9240404

Page generated in 0.0023 seconds