In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity indicate severe non-dynamical correlation. The diagnostic is only weakly sensitive to the basis set (beyond polarized double zeta) and can be applied to problems beyond practical reach of wavefunction ab-initio methods required for other diagnostics.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc500195 |
Date | 08 1900 |
Creators | Fogueri, Uma |
Contributors | Martin, Jan M. L., Wilson, Angela K., Acree, William E. (William Eugene) |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Fogueri, Uma, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0018 seconds