Let N ∈ {8,9,16,25} and let M#0(N) be the space of level N weakly holomorphic modular functions with poles only at the cusp at infinity. We explicitly construct a canonical basis for M#0(N) indexed by the order of the pole at infinity and show that many of the coefficients of the elements of these bases are divisible by high powers of the prime dividing the level N. Additionally, we show that these basis elements satisfy an interesting duality property. We also give an argument that extends level 1 results on congruences from Griffin to levels 2, 3, 4, 5, 7, 8, 9, 16, and 25.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7411 |
Date | 01 June 2016 |
Creators | Thornton, David Joshua |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds