Return to search

40Ar/39Ar Dating of the Late Cretaceous

As part of the wider European GTS Next project, I propose new constraints on the ages of the Late Cretaceous, derived from a multitude of geochronological techniques, and successful stratigraphic interpretations from Canada and Japan. In the Western Canada Sedimentary Basin, we propose a new constraint on the age of the K/Pg boundary in the Red Deer River section (Alberta, Canada). We were able to cyclostratigraphically tune sediments in a non-marine, fluvial environment utilising high-resolution proxy records suggesting a 11-12 precession related cyclicity. Assuming the 40Ar/39Ar method is inter-calibrated with the cyclostratigraphy, the apparent age for C29r suggests that the K/Pg boundary falls between eccentricity maxima and minima, yielding an age of the C29r between 65.89 ± 0.08 and 66.30 ± 0.08 Ma. Assuming that the bundle containing the coal horizon represents a precession cycle, the K/Pg boundary is within the analytical uncertainty of the youngest zircon population achieving a revised age for the K/Pg boundary as 65.75 ± 0.06 Ma. The Campanian - Maastrichtian boundary is preserved in the sedimentary succession of the Horseshoe Canyon Formation and has been placed ~8 m below Coal nr. 10. Cyclostratigraphic studies show that the formation of these depositional sequences (alternations) of all scales are influenced directly by sea-level changes due to precession but more dominated by eccentricity cycles proved in the cyclostratigraphic framework and is mainly controlled by sand horizons, which have been related by autocyclicity in a dynamic sedimentary setting. Our work shows that the Campanian - Maastrichtian boundary in the Western Canada Sedimentary Basin coincides with ~2.5 eccentricity cycles above the youngest zircon age population at the bottom of the section and ~4.9 Myr before the Cretaceous - Palaeogene boundary (K/Pg), and thus corresponds to an absolute age of 70.65 ± 0.09 Ma producing an ~1.4 Myr younger age than recent published ages. Finally, using advances with terrestrial carbon isotope and planktonic foraminifera records within central Hokkaido, Northwest Pacific, sections from the Cretaceous Yezo group were correlated to that of European and North American counterparts. Datable ash layers throughout the Kotanbetsu and Shumarinai section were analysed using both 40Ar/39Ar and U-Pb methods. We successfully dated two ash tuff layers falling either side of the Turonian - Coniacian boundary, yielding an age range for the boundary between 89.31 ± 0.11 Ma and 89.57 ± 0.11 Ma or a boundary age of 89.44 ± 0.24 Ma. Combining these U-Pb ages with recent published ages we are able to reduce the age limit once more and propose an age for the Turonian - Coniacian boundary as 89.62 ± 0.04 Ma.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01017165
Date11 July 2013
CreatorsGaylor, Jonathan
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0024 seconds