Return to search

Stress and failure analysis of thick-walled conical composite rotors

The high specific strength and stiffness of composite materials, as well as the possibility of creating a load-adapted property profile of them are ideally suited for the design of high-speed lightweight rotors. With respect to a load-adapted reinforcement structure of composite rotors, the rotor geometry has a significant influence on the optimum fibre orientation. In the case of conical rotors—the structural behaviour is strongly influenced by centrifugally induced bending effects in the rotor structure, which cause complex three-dimensional stress states in combination with the ordinary tangential and radial stresses. For analysis of the resulting complex stress states, an analytical method has been developed and verified numerically as well as experimentally. The novel method presented here is the basis for a realistic failure analysis and, in particular, serves as an efficient tool for extensive parameter studies and optimizations within the design process.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38442
Date04 June 2019
CreatorsHufenbach, W., Gude, M., Zhou, B., Kroll, L.
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1177/146442070421800101

Page generated in 0.0021 seconds