Meadows in the Sierra Nevada Mountains are an important ecological resource that have degraded in quality and distribution due to several environmental and anthropogenic stressors. The encroachment of conifers beyond forest meadow ecotones is largely responsible for the decline of meadow habitat throughout the past century. Currently, there is little research that quantifies the hydrologic response to removal of conifers encroaching meadows in terms of implicating successful meadow restoration. This study has implemented a before after control intervention (BACI) study design to determine the hydrologic response associated with the removal of conifers from a historic meadow encroached by conifers. The primary goals of this research were to: (1) establish a method to evaluate the weekly water balance of an encroached meadow before and after conifer removal (restoration) (2) characterize the hydrology of an encroached meadow and a nearby control meadow prior to restoration (3) assess the effectiveness of electrical resistivity tomography in improving the spatial interpretation of subsurface hydrology on our study site. A water budget approach was developed to quantify the hydrology of a control and study meadow (Marian Meadow) before and after restoration. In order to determine weekly changes in groundwater depth, 14 Odyssey water level capacitance instruments were installed to a 1.5 meter depth in PVC wells. In order to quantify changes in soil moisture storage, 14 soil moisture probes were installed to a ~1 ft (30 cm) depth. Both sets of instruments were installed using a spatially balanced random sampling approach. Electrical resistivity tomography was conducted on both meadows on three separate dates during: September 9-10 2013, May 5 2014 and September 6-7 2014. A method to quantify runoff from a stream that drains Marian Meadow (Marian Creek) was also established. The Priestley Taylor model was used to estimate daily evapotranspiration from both meadows. Electrical resistivity tomography improved the spatial interpretation of groundwater recharge and facilitated the use of a recession curve analysis to model groundwater recharge when the water table receded beyond instrument detection depths. Electrical resistivity also demonstrated a change in hydrologic characteristics across a forest –meadow ecotone. Analysis of the pre-removal hydrologic characteristics from September 2013 to December 2014 indicates that Marian Meadow may be a favorable candidate for restoration (in terms of hydrology). On Marian Meadow, volumetric soil moisture was higher than the Control Meadow from May-November 2014. Sufficient soil moisture in the summer months is thought to be critical to the maintenance of endemic meadow flora. The water table depth on Marian Meadow and the Control Meadow was similar throughout the analysis period, but Marian Meadow had a shallower water table during the summer months. The Control Meadow had near surface groundwater during short periods from February-April 2014 and December 2014. If conifer removal from Marian Meadow causes an increase in seasonal volumetric soil moisture and a decrease in seasonal groundwater depth, an augmented version of the stable hydrologic system already present on Marian Meadow may result in hydrologic conditions more favorable to meadow restoration.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2519 |
Date | 01 June 2015 |
Creators | Van Oosbree, Gregory F. |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.002 seconds