Return to search

On the Conjugacy of Maximal Toral Subalgebras of Certain Infinite-Dimensional Lie Algebras

We will extend the conjugacy problem of maximal toral subalgebras for Lie algebras of the form $\g{g} \otimes_k R$ by considering $R=k[t,t^{-1}]$ and $R=k[t,t^{-1},(t-1)^{-1}]$, where $k$ is an algebraically closed field of characteristic zero and $\g{g}$ is a direct limit Lie algebra. In the process, we study properties of infinite matrices with entries in a B\'zout domain and we also look at how our conjugacy results extend to universal central extensions of the suitable direct limit Lie algebras.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/26086
Date January 2013
CreatorsGontcharov, Aleksandr
ContributorsSalmasian, Hadi
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds