Return to search

Dithienopyrrole-based conjugated materials for organic electronics

Dithienopyrrole-based conjugated materials, including oligomers and polymers, for potential organic electronic applications, were designed, synthesized and characterized. The optical and electrochemical properties of these materials were investigated, and their structure-property relationships were studied. Some of the materials can be oxidized (or reduced) chemically or electrochemically. Furthermore, the utility of these materials in organic electronic devices, such as OFETs and OPVs, were assessed. In OFETs, they can function as hole-transport materials with mobilities up to 4.8 × 10-2 cm2/(Vs), and one example serves as an ambipolar material with comparable hole and electron mobilities of 1.2 × 10-3 and 5.8 ×10-4 cm2/(Vs), respectively. Some of the materials can also be used as electron donors in OPVs in conjunction with PCBM, and exhibited power conversion efficiencies up to 1.4% after optimizations. They may also be used in other applications such as electrochromic devices, photodetectors, and optical limiting.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/37207
Date26 October 2009
CreatorsZhang, Xuan
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0016 seconds