Irrigation practices in the Rincon Valley and Mesilla Basin of the Lower Rio Grande have evolved over the last century into a complex setting of transboundary conjunctive use. Three major water users have surface and groundwater appropriation rights regulated by compact, treaty, and operating rules and agreements. The analysis of complex relationships between supply/demand components and the effects of surface-water and groundwater use requires an integrated hydrologic model to track all of the use and movement of water. Models previously developed for the region relied on a priori estimates of net irrigation flux or externally-calculated landscape water budgets. This study instead utilizes a MODFLOW model with the Farm Process (MF-FMP), which directly couples the surface-water and groundwater regimes through simulation of landscape processes. This allows the assessment of stream-aquifer interactions in the context of fulfilling irrigation demands with variable supplies of surface water allotments and supplemental groundwater pumping. MF-FMP also simulates direct uptake of groundwater by crops, an important utility for modeling a region with significant acreage dedicated to pecan orchards, a phreatophytic crop. The abilities and limitations of this new model are explored through scenario simulations meant to estimate streamflow depletions caused by historic pumping levels.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/556878 |
Date | January 2015 |
Creators | Knight, Jacob |
Contributors | Maddock, Thomas, Hanson, Randall T., Maddock, Thomas, Hanson, Randall T., Meixner, Thomas |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds