Return to search

Patient-specific models of cartilaginous tissues based on laser scanning confocal arthroscopy

[Truncated abstract] An important field of research in orthopaedic biomechanics is the elucidation and mathematical modelling of the mechanical response of cartilaginous tissues. Such research has applications in the understanding of joint function and degenerative processes, as well as in surgical planning and simulation, and engineering of tissue replacements. In the case of surgical and tissue engineering applications especially, patient-specific mechanical properties are highly desirable. Unfortunately, obtaining such information would generally involve destructive mechanical testing of patient tissue, thus rendering the tissue functionally unusable. Development of a laser scanning confocal arthroscope (LSCA) within our School will soon allow non-invasive extraction of 3D microstructural images of cartilaginous tissues in vivo. It is also envisaged that, linked to a suitably formulated constitutive formulation, such information could allow estimation of tissue mechanical response without physical biopsy. This thesis describes the development of techniques to potentially allow non-invasive patient-specific estimation of tissue mechanical response based on confocal arthroscopy data. A microstructural constitutive model is developed which is capable of directly incorporating LSCA-derived patient-specific structural information. A fibre composite type homogenisation approach is used as the basis for the model. ... The result is a series of orientation tensors describing the 3D orientation of linear features in the image stack. The developed analysis techniques are used to estimate fibre volume fraction and orientation distribution for each of the meniscal specimens. The developed constitutive model and image-derived structural parameters are finally used to estimate the reaction force history of two meniscal cartilage specimens subjected to partially confined compression. The predictions are made on the basis of the specimens? individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework. The likely limitations and potential areas of improvement are discussed.

Identiferoai:union.ndltd.org:ADTP/221259
Date January 2006
CreatorsTaylor, Zeike Amos
PublisherUniversity of Western Australia. School of Mechanical Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Zeike Amos Taylor, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0018 seconds