Return to search

Pseudo-differential crack theory

Crack problems are regarded as elements in a pseudo-differential algbra, where the two sdes int S± of the crack S are treated as interior boundaries and the boundary Y of the crack as an edge singularity. We employ the pseudo-differential calculus of boundary value problems with the transmission property near int S± and the edge pseudo-differential calculus (in a variant with Douglis-Nirenberg orders) to construct parametrices od elliptic crack problems (with extra trace and potential conditions along Y) and to characterise asymptotics of solutions near Y (expressed in the framework of continuous asymptotics). Our operator algebra with boundary and edge symbols contains new weight and order conventions that are necessary also for the more general calculus on manifolds with boundary and edges.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2575
Date January 2000
CreatorsKapanadze, David, Schulze, Bert-Wolfgang
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0017 seconds