When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2638 |
Date | January 2002 |
Creators | Nazaikinskii, Vladimir, Savin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Preprint |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0016 seconds