Return to search

Cavity mode entanglement in relativistic quantum information

A central aim of the field of relativistic quantum information (RQI) is the investigation of quantum information tasks and resources taking into account the relativistic aspects of nature. More precisely, it is of fundamental interest to understand how the storage, manipulation, and transmission of information utilizing quantum systems are influenced by the fact that these processes take place in a relativistic spacetime. In particular, many studies in RQI have been focused on the effects of non-uniform motion on entanglement, the main resource of quantum information protocols. Early investigations in this direction were performed in highly idealized settings that prompted questions as to the practical accessibility of these results. To overcome these limitations it is necessary to consider quantum systems that are in principle accessible to localized observers. In this thesis we present such a model, the rigid relativistic cavity, and its extensions, focusing on the effects of motion on entanglement and applications such as quantum teleportation. We study cavities in (1+1) dimensions undergoing non-uniform motion, consisting of segments of uniform acceleration and inertial motion of arbitrary duration that allow the involved velocities to become relativistic. The transitions between segments of different accelerations can be sharp or smooth and higher dimensions can be incorporated. The primary focus lies in the Bogoliubov transformations of the quantum fields, real scalar fields or Dirac fields, confined to the cavities. The Bogoliubov transformations change the particle content and the occupation of the energy levels of the cavity. We show how these effects generate entanglement between the modes of the quantum fields inside a single cavity for various initial states. The entanglement between several cavities, on the other hand, is degraded by the non-uniform motion, influencing the fidelity of tasks such as teleportation. An extensive analysis of both situations and a setup for a possible simulation of these effects in a table-top experiment are presented.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:594705
Date January 2013
CreatorsFriis, Nicolai
PublisherUniversity of Nottingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.nottingham.ac.uk/13795/

Page generated in 0.0018 seconds