Return to search

A numerical platform for the identification of dynamic non-linear constitutive laws using multiple impact tests : application to metal forming and machining

The main concern of this thesis is to propose a new inverse identification procedure applied to metal forming and machining situations, which can provide an appropriate parameters set for any elastoplastic constitutive law following J_{2} plasticity and isotropic hardening, by evaluating the correlation between the experimental and numerical responses. Firstly the identification program has been developed, which combines the Levenberg-Marquardt algorithm and the Data processing methods to optimize the constitutive parameters. In terms of experimentation, dynamic compression and tensile tests have been conducted. The final deformed shape of specimens, which relies on a post-mortem analysis, has been selected as the observation quantity. As for the numerical simulation, the numerical models of the same experimental procedure have been built with the finite element software Abaqus/Explicit in order to provide numerical responses. A numerical algorithm has been proposed for the implementation of user defined elastoplastic constitutive laws in Abaqus/Explicit.

Identiferoai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:20112
Date28 March 2018
CreatorsMing, Lu
ContributorsInstitut National Polytechnique de Toulouse - INPT (FRANCE), Laboratoire Génie de Production - LGP (Tarbes, France)
Source SetsUniversité de Toulouse
LanguageEnglish
Detected LanguageEnglish
TypePhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://oatao.univ-toulouse.fr/20112/

Page generated in 0.0025 seconds